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ANALYSIS OF TIUMPERATURE DISTRIBUTION IN LIQUID-COOLED TURBINE BLADES ‘

By JOEIX S. B. LIVINGOOD and K. BYBON BROWN

SUMMARY

The temp~rature distribution in Liquid<ooled turbine bladee
{determinesthe amount of cooling required to redwe the blade
temperature to permi88ibie calues at 8pe&$ed [ocation8. This
r(port pre8ent8 analytical methods for computing temperature
di8&”bution8in liquid-cooled turbine blades, or in ~“mpli$ed
~hapesu8ed to approximate 8ectwns of the blade8.

The indili-lual analy8e8 arejht presented in terms of their
mathematical development. By mean8 of numerical examples,
comparison are made betueen n“m.plijiedand more complete
wMion8 and the efiect~ of seceral rariable8 are examined.
.Vondimentional charts . to timplify 8ome temperature-
(Iietribution calculations are also gicen.

It wa8 found that for blade materials ha.ring low thermal
conductirities (corresponding to blade materia[s in current use)
a onedimen8ion.a/ spanwi8e temperaturedi8tribut ian equation
is applicable near a coolant pa..wage. The cooled part of the
blade, wre8pectire of blade length, uus found to remain at a
determinable uniform temperature, called the prew.lent blade
tt’mperature. The precalent blade t~mperature increa8ed about
1,50°F for an increa8e in the difference betveen th-eejec$ire gas
temperature and th coolant temperature of 1000° Ffor a range
(If tffectice gaa temperaturefrom i?OOOOto 6000° F-

In case8where rim coolingis irwigni~cant, it was found that a
t)ne-dimenm.onal clwrdtie temperaturedistribut ion equation
waa sujlciently near the re[a.rutionsolution for the actual blade
shape for a$r8t+wder approximation.

INTRODUCTION

.4 limit tition on design and performance of aircraft gas-
turbine power plants is the strength of the turbine materials,
w-hich decreases as temperature increases. This limit at ion
may be greatly alleviated, even when nonstrategic materials
me used, by the application of turbine cooliig. An extensive
study of both liquid and air cooling of turbine blades has been
[wrried out at the NACA Lewis laboratory since 1945.

The temperature distribution in a turbine blade determines
the amount of cooling required to reduce the blade tempera-
t ure to permiasibIe values at specified locations. Analytical
studies have been conducted to predict temperature distribu-
tions in cooled turbine blades. A summary of the analytical
methods developed for calculating spanrvise temperature
(Distributions for three types of air-cooled turbine blade is
presented in reference 1. The present report summarizes
the analytical methods developed for calculating temperature
distributions in liquid-cooled turbine blades. Parts of these
onal~-ses are presented in references.2 and 3.

Because the calculation of a generalized threedimensional
temperature distribution through a liquid<ooled turbine
blade is too tedious to be of practical ~“ahle and because some “ ““
knowledge of the distribution in a radial direction is neces-
sary, the first instigation presented herein is Iimited to a
one-dimensional spanwise distribution, This distribution,
however, is valid onIy in the immediate vicinity of the
coolant passages. In order to study more accurately the
temperature distribution in the trailing section of the blade,
a threedimensional solution is determined for a rectangular
paraIleIepiped used to appkimate a blade trailing section.
This solution serves to determine the importance of blade
thermaI conductivity and of distance from the coolant pas-
sage. Because numerical calculations for a rectangular
paraIIeIepiped produce a constant span-wise temperature in
the region of the blade beyond the influence of rim cooling
(that is, in the region of the blade unaffected by conduction -‘“ -”
to the rim), onedimensional chordwise temperature distribu-
tions are then calculated for shapes approximating various
parts of a blade cross section; these investigations are valid
for the part of the bIade beyond the influence of rim cooling.
Finally, a t-wodimensional temperature distribution through
the cross section of an actual blade ahape is obtained in order
to determine the accuracy of the pretioualy determined
approximate solutions and to study the effect on temperature
distribution of a peripheral ~ariation of gas-to-blade heat-
transfer coefficient.

Xumerical esarnples based on coefficients available from
unclassified sources are included.

METHODS OF ANALYSIS

Onedimensional spantie, threedimensionalj onedimen-
sional chordwise, and twodirnensionaI chordwise ternperature-
distribution equations for liquid-cooled turbine blades
or for simplified shapes used to approximate sections of
liquid-cooled turbine blades are presented. For simplicity
in presentation, the individual analyses are fit formulated
in terms of the mathematical methods. The comparative
applicabilities of the methods of analysis are established in
later sections of the report.

For all the analyses presented, the following conditions are
assumed:

(1) The cooIant temperature is constant at the average
temperature of the coolant, or the coolant forms a constant-
temperature reservoir. This assumption ia valid when the
change in coolant temperature is small in comparison with
the temperature difference between the gas and the coolant. ““---

I Supem?des NACA TN WI, “Auzd.@ of Temperature DfsktbntIon h LIqnid.CooIed ‘l?urbhe Blades” by John N. B. LMnKoIY3and W. Bpmn Bmvmi 19SI.

169



170 REPORT 1060---NATION AL ADVISORY

r2) The Made-to-coolant heat-transfer coefficient is .~OII-
sttmt.

(3) The thermal conductivity of the Made is constant.
(4) The effective gas temperature at all parts of the blade

is the same.
(5) Radiation effects are considered to be included ir. the

ileat-transfer coefficients. TLe following individual analyses
are presented:

One-dimensional spanwise temperature distribution,-A
onedime.nsional spanwise calculation gives a radial tempera-
ture distribution valid in a part of the Made near a coolant
passage. In this particular case, the radial temperature
distribution is carried through the Made and through the
turbine rotor. Heat transfer between the turbine rotor and
the fluid on the outside of the rotor k assumed to take place
al]cl a constant value of gas-to-blade heat-transfer coefficient
is mmuncd. For simplicity, a blade of constant cross-
scct ional area and perimeter is considered.

For blades with little taper, the method is applicable if
average cross-sect ional area and perimeter are considered.
In general, however, a numerical solution is necessary for
trtpcred blades.

Three-dimensional temperature distribution through sim-
plified trailing section.— A threc~dimensional tempcratmw
distribution for the trailing section of the Made is obtained
by considering this part of the blade as a rectangular
pwvdlelepiped. The blade-root temperature is considcre.d
consttint, the gas-to-blade heat-transfer coefficient is constan t,
and it is assumed that no heat flows across the media.n plane
of the simplified blade section.

An approximate. solution for tapered blades is obtainable
by this method if the ‘blade is considered in small sections,
aver~we valuea of cross-sectional area and perimeter are
considered for each section, and appropriate compatibi~i ty
relations are satisfied.

One-dimensional chordwise temperature distribution
through simplified shapes.—Rdangu1ar and trapezoidal
sections, concentric circle annuli, and sections between
paraUel plates are considered as the simplified shapes used
to approximate parts of a turbine-blade cross section.
The gas-to-blade heat-transfer coef6cient is. considered
cons tan L For comparison purposes, the rectangular and
trapezoidal sections are constructed so that Lengths and
areas are ident.icaI.

Two-dimensional chordwise temperature distribution.—
Numerical two-dimensiona~ tempera~ure distributions

through the cross section of an actual blade shape are de-
termined. Constwnt and variable gas-to-blade heat-transfer
coefficients are considered.

ONE-DIMENSIONAL SPAN WISE TEMPERATURE DISTRIBUTION

The spanwise tempmaturcdiatiibution equations for a
liquid-cooled turbine, a section of -which is shown in figure 1,
are derived in reference 2 and axe reproduced in appen-
dix B. In this spanwise case, the investigation was extended
from blade tip to rotor hub.

For convenience, the turbine was divided into four
sections (fig. 1), and the temperature-distribution equations
were obtained from heat balances for differential elements
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in each section. Inasmuch as c.hordwiso conduction was
neglccted, the following equations, valid only in the neighbor-
hood of the coolant passages, were obtained. For the
uncoo@ section of the blade (fig. 1, section 1), it was found
that

T.,,= Tg,,– C, cosh A (q+ (7,) (1)

where Cl and Ca are integration constants and

‘=(&)’ .“
(AU symbols are dehed in appendix A.) The value of C,
is determined by use of the boundary condition at the blade
tip (wh~e heat enters by convection only).

or

For the cooled section of the blade (fig. 1, section 2), it
was found that

where C8 and (74are integration constants,

and

(2a)
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The prevalent blade temperature T~,~ is the temperature
the Made would assume if no heat flows in or out of the ldade
ends.

For the rim section (fig. 1, section 3), with assumed con-
stant area,

Trim=G+ C4efi3+ C8@’3 (3)

wlm-e (26and C’nare integration constants,

[’

~= @ J=T=+ (hi, J{.J=,T[
4Tr*.,h.+ (h,,&la, 1

[~=4Tr*,aFfi=+(hi,3Ji,3)m4lirlmiirlm1
tmd T. is the fluid temperature on the outside of the rotor
tind (ht, 31[,J., is the average of the values of h~.31{,3 found
for the blade coolant passages, the rim circumferential
passages, and the radial passages through the rotor (fig. 1).

For the rotor section (fig. 1, section 4), tith assumed con-
stant strength,

TR=J+ Ci cosh H, (4”)

where C7 is an integration constant, and where

J– 42_r?.a&TFk<blt daTiL—
— 4rr4,.gh=+(hi,42t,J=,

aIlcl

[

== 4~r4.wha+(ht.41J., 4
L’EAE 1

\’21hlf?S of the !3&integration constants Cl, C2, C4! ~6, C6;

1A (‘7 are found by solving simult.aneously the SLYequations
resulting from equating temperatures and heat flows at the
various junction points of the four sections of the turbine.
(Subscripts a and P used after numerical subscripts designate
the end nearest the Made tip and the end nearest the rotor
huh of the sections to which the numerical subscripts refm,
respectively.) At the junctions of sections 1 and 2,

Tg,e– Cl cosh A(x,..g+ C2)=T,, p– C3eB”.”– C’4e-B’~m (5)

kB.&t, ,,K’IA sinh A(x[,e+ 12~=Bk~.4~,z. C3e( %a_

C4e-B’’.a)+ht,l(AB,l,AE,z, z J (TB.P—C’3eB=’.c—

( ‘,e-Bxz,=– TJ (6)

Equation (6) equates the heat leaving section 1 to the sum

of the heat entering the metal of section 2 and the heat
tmtering the coolant at that part of the blade where the
inh’t and outlet passages are comected. An approximation
in the procedure has been introduced at this point because
a separate blade section for the part of the blade containing
the connecting passage between inlet and outlet passages is
not introduced. A numerical calculation showed that. use
of such a section would slightly decrease the temperature at
the blade tip.

At the junction of sections 2 and 3,

TD,~– CaeB’’.fl–Q4e-BzZ.P=G+ Q5eE’z,.+ &’6e-%. (’7)

lc~A~,2B(C’3eB’~$—C4e-B’2.~)+

“[;.442 h.& 2(Tg, ,– TB,~+ C’3eBr’.#+——
A B,?

~4e-B’*,d)=Ek A & (C,e
B “2 ziiB,*

-%,=_~5e%,.) (q “

Equation (8) equates the sum of the heat leaving section
2 and that. entering section 3 directly from the hot gases to
the total heat entering section 3.

.\t the junction of sections 3 and 4,

G+ C5e&’.$+C6e ‘Era.P= J+- C7 cosh Hr. (9)

THEEEDIMEiiSIONAL TEMPERATUREDISTRIBUTIONTHROUGH
331MPIJPfEDTRAILINGSECTfOS

The span-rise temperature-distribution equations prtwi-
ously presented are valid only in the neighborhood of the
coolant passages. Most currently used turbine blades are
so shaped that coolant passages cannot be located near the
trailing edge. Because of the impossibility of placing reason-
ably large coolant passages near the trailing edges of con-
ventional turbine blades and because the trailing sections
seem most likely to be the hottest parts of the Made, other
detailed studies were made of temperature distributions.
The first study was devoted to approximating the traiIing
section by a rectangular parallelepipd and to determining
the three-dimensional temperature distribution through this
parallelepiped (fig. 2).

~~~

Liquid
coolant

l!,--.-_+----------------------
I +-– --=--–—---l--w L

FIGL!EX2—Reetanguhr peiafleIeplpeif used to approximate tiatlfng tion of4-fnch turbine
blade fer three-dlmendonnl emlysk.
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The median plane of the recta~gular pan-dlelepiped was
chosen as the plane z= O, and symmetry was assumed about
this plane (no heat flow was assumed to cross this plane,
as previously stated). Boundary conditions at the blade
trailing edge and blade tip were simplified hy assuming the
blade width and blade length to be extended by a distance
equal to one half the blade thickness. In figure 3, the edge
MN at temperature T gained some heat from the gas stream.
The extended surfaces NO and A4P were at nearly the same.
temperature T and no heat entered the edge OP; these
surfaces therefore gained practically the same amount of
heat, as the actual exposed edge. The validity of this ap-

[ :Z

FIGURE3.—Carwctlon for heat received by tralllng edge.

Yalues of h“~,s and 0~. ~ are given by the relations

~m,x= (–1)”-’
T(zn —1)

and

proximation is discussed i~~reference 4 (pp. 216 and 217).
Distances increased by 7/2 are denoted by primes.

The derivation of the threedimensional temperature dis-
tribution, originally derived in reference 3, is reproduced in
appendix C. The differential equation, in final form, for
the temperature distribution is found to be

(11)

where x’ and y’ denote x and y increased by r/2, respcckiv~y.
A solution of equation (11) satisfying the boundary condi-
tions at x’=#=z=O is

@=~l>l(&m cos Lx’ cosh Mm,. y’ cos Nmz +

Om,~ cosh Pin,n z’ cos Q~y’ COS N~z) (12)

where K, L, M, h’, O, P, and Q me constants. Relations
among the constants are

-- Mm =2=Nm2+Ln2

Pm)=iVJ+Q.2 Im,n=l,2,3, . . . (13)

(14)

Sill Qaj’ 4( TZ,,–TD, J sin Nn ~
2 1

‘“’”’v
( )

sin2Q. j7 N ~

()

7 cosh;~, fib’ ““ “’- ““ ‘- ‘“--
l+W “2 ~+sin2Nv

fl 5)

2N~~
.

.4pplication of the boundary conditions at x’=N, y’ =j’, and 2=r/2 lead to the following methods of evaluating L, Q, ad
N, respectively:

(16)

(1.P. -_

and

It is at once obvious that from equation (16) many values
of L. result. Because of the periodicity of the tangent
function, equations (17) and (18) likewise have many
solutions.

Values for all the constants in equation (12) can thus be
found and the temperature can now be computod at any
point in the rectangular para.llelepipcd. In reference 3,
appendix B, it is shown that sufficiently accurate results can
be obtained by using m=l only.

ONE-DIMENS1ONALCHORDWISETEMPERATUREDISTIUBUTiONS
THROUGHBIMPLIFIEDSHAPES

Bcca~se the spanwise temperature distributions are valid
only in the neighborhood of the coolant passages and because
the three-dimensional approxinmt e solution resultc.d in a
constant spanwise blade temperature in the part of the blade
beyond the influence of rim cooling, one-dimensional chord-
wiae temperature distributions were determined for sections
of a liquid-cooled turbine blade that can be approximated
b-y simple shapes (fig. 4). Rectangular and trapezoidal
approximations for blade trailing sections were considered.
Trapezoidal sections may ako be used to approximate the
leading section in some Mades. In addition, analyses were
made for leading sections approximated by concentric circle
annuli and for the sections of blades with very little metal be-
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tween Made outer surface and coolant passages approximate ed
as regions between parallel plates. The temperature distri-
butions through these simplified shapes, derived in appendix D
and valid in regions beyond the influence of rim cooling, follow.

Rectangular trailing section of blade removed from
influence of rim oooling,-For a blade trailing section
approximate ed by a rectangle (fig. 4(a)) the temperat.ure-
distribution equation is

‘f (Tz ,– T,) cosh WY’

e=~’ ‘ ’19)
P sinh pj’ +: cosh VY

where

tI=Tf..-TB
and

)

‘2ho 4
~=(,~

Trapezoidal trailing section of blade removed from in-
fluence of rim cooling. —For a trapezoidal approximation to
the blade trailing section (fig. 4(b)), the temperature distri-
bution is

173
——

and Jo, iJ1, HO,and iHl are Bessel functions.
shaped section the temperaturedistribut ion
reduces to

For a wedge-
equation (20)

(21)

Concentric-oircIe-annulus approximation for blade leading
section,-Thu equations expressing the lhl~=metal tcnl-
perature at the coolant passage -wall T*, t, at the leading edge
of the blade TB.., and at any point in the annulus TB are
found to be (fig. 4(c))

and

where

TB.i=Tt+ ‘[D~,~::(’22‘
TB.0=Tx,4–{[DOfiO~:’23

D
()

kg, ~
TB=TB, i+ Do (TB,.– TB,J

()

(24)
1% ~

Section of blade approximated by parallel plates, —’lhe
equations expressing the blade-met al temperatures at the
coolant-passage -wall (fig, 4 (d)) T’, i and at the blade outer
edge TB.. me

lb’()— (hoT&c+htT,)“+ uhohi
TB,~=

()

(26)
1+ & (h.+hf)

and

where u is the distance between the parallel plates.
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TWO-DIMENSIONALCHORDWISETEMPERATUREDISTRIBUTION

The temperature at any point on the blade cross section
may be found by solving the Laplace differential equation
given in terms of the temperature difference 8

(28)

where X and Y are the Cartesian coordinates in the blade
cross section. The boundary conditions, expressed in
terms of the partial deri~at.ive of 6 in th~ direction normal
to the boundary, are

at the outer boundary and

g=@’g,,-w’)

(29)

(30)

at the coolant-passage boundary.
A dosed solution to equation (28) cannot bc obtained’

because of the impossibility of applying the given boundary
conditions along the odd-shaped boundary of a turbine
blade (fig, 5). A numerical solution is available, however,
by application of the relaxation method (reference 5). A
sketch of the blade cross section is covered by a network of
points (a square network was chosen). Large net spacings
are recommended at first,, and the insertion of additional
net points n-q- be made at any time during the solution,
thus permitting the use of a final network of any desired
size, Temperature estimates for the net points can be ob tained
from the solutions of the chordwise blade-twnperature-
distribution equations for approximate shapes previously
presented and from application of the boundary conditions
given by equations (29) and (30).. Rcsiduals, which may
he considered as interior heat sinks, can then be calculated
at earh net point whose immediately neighboring points
remain within the boundary from the relation

7iz=h+e9+h+84-4eo (31)

where the subscript zero denotes a point in the blade cross
section and subscripts 1, 2, 3, and 4 denote the points in
the square surrounding the point with zero subscript.

1----””” d

FKGCRE&-Turbine-blade aectfon showing coolant passag.w

The object of the relaxation “is to reduce the values of
Q to zero, or as close to zero as poa9ible. When the rclasa-
tion equation (31) is emplo~ed~ the following procedure is
used2 A change in 00alters Ql, QZ,~~, ~~ by the same change
and QOby minus four times this change, all other values of o
remaining fixed.

Equation (31) is the finite-difference equation correspondi-
ng to the partial differential equation (28). For net points,
some of whose immediately neighboring points lie outside the
boundary, equation (31) must be modified, For examplc, if
point 1 Iics outside the boundary and point 5 is the boundary
poin~ IxAween O and 1, the follo,ving equation applies:

where d ,ia the ratio of the distance between points O and 5
to the net spacing.

Corresponding changes in the values of ~ result from tl~o
usc of equation (32). No harm is done by ovcreatimating
the final values of 8, as successive calculations wiIl cstafilish
them again. Continued relaxation eventually rcducea all
the residuals as desired and tho blnde temperatures cm
finally be obtained from the definition of 8,

e= T.,,– TB

APPLICATION OF ANALYSIS

Typica] numerical examples for a sample Made are
presented to ihstrate temperature trends and to determino
the effects of various factols on the temperature distributions
in a liquid-cooled turbine Made. A turbine blade whose
external shape is simiIar to that of the rotor-root section of a
convelitional gas-turbine design was selected as the sample
blade. Two 0.25 -inch-diamet.er coolant passages were
assumed in tho blade (fig. 5), connected near the blade tip
by a cross-over ptissage, and the cooling was assumed to
occur through forced convection. No alIovrrmcc was made
in these cakulatlions for the effects of free-convection currents
that might he present, A gas flow of 55 pounds pcr second
(equivalent to a mass velocity of about 58 lb/(see) (sq ft))
and a coolant flow of 7 pounds per minute pm Made were
assumed (to insure turbulent flow and to remove the dc.pend-
ence of the blade-to-coolant, heat-transfer coefficient on the
length-@-diameter ratio of the coolant pnssage).

For the one-dimensional spanwisc case, in which the
cooling was carried to the rotor hub, two 0.25-inch-diameter
coolant passages running circumf erentially through the rim
and ten 0.50 -inch-dia.meter coolant passages running radially
through the rotor were assumed (fig. 1). For this case,
water, ethylene glycol, and kerosene were all considered as
possiblo coolants. Other calculations were made ordy for
water as the coolant because of its superiority over the other
coolants considered.

Blade-to-coolant averago heat-transfer coefficients wme
calculated by use of formulas presented in reference 6,
page 168 for turbtient flow and page 190 for lamina.r flow
(for ethylene glycol only). Gas-to-Made average hefit-
transfer coefficients were calculated by use of formulas given
on pag~ 236 of reference 6. The following coefficients were
used in the analysis:
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Outside heat-tram~fercoefficient,h.
Btu/@r)(~ft)~---------------------------------- 222

Bt~(~c)(sq ft)(O~-------------------------------- R06167

Inside heat-transfer coefficient, himl
Water,

Btu/@r)(sq ft)(°F]----------------------------- 2370

Btu/(~a)(~ft)(O~ -------------- -------.------ 0.6583

Et.hylenegly_wl,

Btw(h)(sq ft)~--------------- --------------- 649
Btu/(wc)(~ft)~--------------- -------------- 0.1803

Kerosene,
13tu/(hr)(sq ft)~------------------------------ 510
Btu/@ec)(sqft)(°F)---------------------------- 0-1417

Other numerical -rakes used in the calculations were
(figs. land~):
Effective gas temperature, T,,,, ”F--------------------- 2000-5000
Average coofant temperature, Tl, OF______________________ 200
.Numberof blades, Z--__-------------- ----- ------------- 55
Area of blade cross section l,A,,sq ft---------.-.-------- 0-00198
Area of blade crosssection2, &,sq ft_-_-_--_.--.-------- 0.0013
Area ofcrms *ction3, ~, ~ft------------------------ - 0.312
A~aofcross section ~.&, sqft- . . . . . . . . . . . . . . . . . . . . . . . . O.236
Nadeoutsideperimeter,ld,ft ----- ----------------------- 0.2542
Blade inside perimeter, [i,z,ft----- --------- -------------- 0.131
Average radial distance, section 3, r$,.,, fL--- ------------- 0.4917
ilverage radial distance, section 4, r~,a,,ft-----..--..--...- 0.3333
Length of chordwise trailing section, ~, ft----___-_-_-_-_-- - a 050
Un@hofspanw& tmDkg*ction, b, ft------------------ CL3333
Thickness of trapezoid at coolant passage, rz, ft ------------ 0.021
Thickness of trapezoidal trailing edge, Tt, ft-------------- 0-003
Thickness of rectangle, r,ft----------------------------- (L010
Temperature at blsde root, T,, IF------------------------ 330
Thermal conductivity, kB

Btu/fir)(ft)~F)---------------- ------------------- 15-210
Bt~(wc)(ft)~F)------------------- --------- 0-00417-0-0583

Cooling+ir (in contact with rotor] temperature, !F~,°F------ 0
Hea&transfer coefficient betweeu coof.ing air and rotor, h.

Btu/@r)[sqft)(0F)--------------------------------- 30
Btu/(sec](sqft)(0l?)------------------------------- - 0-00S74

.kverage value in section 3 of l~,lhi~

Waterr
Btu/@)(ft)(O~ -------------- ----------------- 30,360
Btu/(*c)(ft)(O~ ---------------------------- --- a 433

Jithyleneglycol,
Btu/(hr](ft)(O~ ______________________________- 8305
Btu/(sec)(ft)(O~ ----------------------- -------- 2.307

Kerosene,
Btu}(hr)(ft)(O~ ------------------- ------------ 6533
Btu/(*c)(ft)~----------------- --------------- L 815

.4verage value in section -1 of l[,~lh.+

M’at-er,

Btu/@)(ft)(°F)---------------------- --------- 6107
Btu/(sec)(ft)(O~ ------------------------------ - ,L666

Ethylene glycol,

Btu/(hr)(ft)(O~ ________________ --------------- 1656
Bt~(wc](ft)(O~--------------------- ---------- 0.460

Kerosene,
Bt~@r)(ft)(0k7----------------- -------------- 1318
Btul(wc)(ft)(O~ ------------------------ ------- 0.366

OXEDIMENSIOXALSPANWISETEMPERATUREDISTRIBUTION

Theconehntsof integration were found by solving equa-
tions (5) to (10) for the specific examples stated; a blade
thermal conductivity of 15 Btu/(l@(ft)(°Fj was used.
Blade coolant passages extending to within X6 inch of the
Madetipw ereconsidcrecl in blade swith spans ranging from
Ij{e to 4XS inches, with water as coolant, and for effective
gas tempwaturesra ngingfrom 2000°i0 5000° Fin orderto

study the effect of blade length on the temperature distri-
bution. The temperature distributions were deikrminc <,-‘“-
by use of the calculated integration constants, from equa-
tions (1) to (4) md are showm in figure (3. The general .
trend shown is a nearly constaflt temperature about equal
to the coolant temperature through the rotor, a sharp tern.
perature increase through therim andthe baseof the blade,
a nea.rly constant temperature (called the prevalent Made
temperature) through the liquicl-moled part of theb lade,
and another sharp temperature increasc toa value approach-
ing the effectivegm temperature in the uncooled part of the
blade. From figure6, it canrearlily be seen that thesarne
prevalent blade temperature prevails through blades of
rarious lengthscooled to within% inch of theblade tip.

In order to study the effect of coolant-passage length on
the temperature distribution, other calculations were made,
with water as coohmt and for an effective gas temperature
of 2000° F, fora4)@nchbl adespan but with blade coolant
passages of various lengt.La. The calculations, again cletw-
mined by use of equations (1) to (4), are plotted in figure7;
for short coohmt passages high-temperature gradients exist
throughout the blade, whereas for long coolant passages
practically no temperature gradient exists throughout most
of the blades. -.—

,
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L
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345

ROo?us, in.

FmczB 6.—ElTeet of mrious bfode Iengtbs on temperature dtstr[but[on for water-cmkl
~ turbine for effeetire gas temperatures from ~“ to .5CO)0F. Omdirnensfonsl spanwke
rmdysis. CooIant psszoges extend to within Ha inch of blwfe tip; mobmt flow, 7 pounds
per mbmte ~r bkvk tbermtd mndnctftity of bhde, 15Btu/(hr)(ft)~F).

Radius, in.

FmcRB ?.—EEwt of varions mokmr-pmssge Iengtbs on temperstnre dist.rthutlon. One-
dknensioneJ spanwfse anaI.@s. BIsde length, 4X6 Inebw eoolsnt flow, Y pomrds per
mfnute per blade; thermsl mmiucttvity of blsde, 15Btu/(br) (ft) @l .
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Ctdculations were also made for the same blades with
4.inch coolant passages and for an effective gas temperature
of zooo 0 F with wateu, ethylene glycol, and kerosene con-
sidered as possible coolants. Them results showing the
efftwt of various coolants on temperature distribution are
given in figure 8. For an effective gas temperature of 2000° F
and a coolant flow of 7 pounds per minute pm Wade, the
prevalent Made temperature in degrees Fahrenheit is ubout
one fourth, two fifths, and one half of the eflective gas
temperature for water, ethylene glycol, and kerosene cool-
anb, respectively. The consideration of cooling air on the
outsitle of the rotor accounts for the rotor temperature being
less than the coolant temperature.

Finally, for the spanwise c.nsc, figure 9 shows the variation
of coolant flow on prevalent blade temperature. The
prwalent blade temperature decreases with increasing
coolant flow; the rate of this decrease diminishes as the cool-
ant flow increases. It can be seen that the cooling effective-
ness, defined m (Tc,.– TB)/(Tg,,– 2’1), changes from 0.68 to
0.91 for water as the coolant flow is increased fmm 2 to 1C
pounds per minute per blnde. ‘1’he superiority of water is
appnrent.

RodIus, m.
FIGURE S.—Temperature dbtrlbution for gas turfine for VarfOUeM@ CWht9. OW

dimens!onal sfmnwl.w analyk Caofant-pe%?agelength, 4 InCbe%COOIWWse?H extend
to within }46fnch of blade tip: coolant flow, 7 pounde pm m[nute per hlede; thermal wn-
ductiv[ty of bIade, 15 Btrr/@rl (ft) ~F).

Cdanf flow, f&/(min)(blode)

FIG1lBE9.—V8riation of prevalent blade temperature with molent flow. One-dbnenefonel
spanwlse analysf.q. Thermal conductivity of blade, 15Btu/(hr) (ft) (“F).
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THEEEI)lMENSIONALTEMPERATUREDISTRIBUTIONTHROUGH-. SIMPLIF~EDTRAILINGSECTfON

A three-dimensional tenmerature distribution in a turbine-
blado trailing section appr&imated by a rectangular paral-
lelepipcd (fi~. 2) was determined by use of equation (12)
(approximated by use of m=l only, as previously mentioned),
The constants L.m,Q., and IVl were obtained from equations

(16), (17), and (18), respcctive~y; the constants K,,n and
0,,. from equations (14) and (15), respectively; and the
constanli Ml,. and PI, n from equations (13). The distrilm- .-
tion was found in two planes representing the maximum and
minimum tempwmtures for the ~-axis; the first plane was
located. at the side of the cross section of the rectangular
paraIlelepiped and the second plane was on the median plane
through the rectangular pma.I1elepiped. The results are
shown in figure 10(a) for an effective gas temperature of
2000° F and a thermal conductivity of 15 Btu/(hr)(ft)(OF)
and give the temperature distribution at .wrious distances
from the coolant passage. The curve labelcd “approxima-
tion of temperature “ in figure 10(a) is a onc-dimensional
chordwise distribution through the approximated rcctan-
gula.r trailing section. Similar results, for thermal conduc-
tivities of 120 and 210 Btu/(hr) (ft.) (“F), are given in figures
10(b) and 1O(C), respectively. Calculation of cosNlr/2 (see
equation (12) ) reveals the temperature variation in the. two
planes to be about 3.6 percmt of 13for a blade thermal COD-. -
ductivity of 15 Btu/(hr) (ft) (OF); 0.5 percent for a“ thermid
c.onducfi~iby of 12tl Btu/(hr) (ft) (OF), and 0.3 percent for a
therrna~~nductivity of 210 ~tui(hr) (ft)(OF). For a thermal .,.
ctmduc$~ity of 15 Btu/(hr) (ft) (°F), “figure. 10(a) shows. q
c&st.ant twnpcraiure for the last three quarters of the blade; ‘“”

.Ef fective” gus +emperofum
gooo ‘ Oisfonce from cooian t

/800
.
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— =_----..-—-.-=---------------- .18
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--- - —-— --—- “—-’ ‘- --—
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“ ./

‘1 — Tempero fure a+ center of bla”de
400 ---- Temperature WI sunt?ce of blode

— - — Approximai%n of +empero+ure

(a)
I t 1 i
CbL#6mf temperature

2000
I 2 3 4

Blade length, in

(a) Thermal conductivity of blmle, 15Btu/@r) (ft) (“F).
FIGVA 10.—Three-dimeueieneJ temperature dlatr!butfen fn trail!ng eectton of turbfne blade.
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that is, conduction to the rim affects about the first quarter
of the blade length. Figure 10(a) also shows that the level
of the temperature in the principal portion of the blade rises
rapidly as the distance from the coolant passage is increased.
&’ear the coolant passage, the distribution is in good agree-
ment with the one-dimensional spanwise distribution pre-
sented in figures 6 and 8. & the thermal conductivity is
increased, as shown in figures 10(b) and 10(c), the part of
the blade affected by rim conduction increases; for a thermal
conductivity of 210 Btu/(hr) (ft) (W’), about two thirds of the
blade length shows this effect.

ONE-DI,MENSIONAL CHOEDRT3E TEMPERATURE DfSTEIBUTfON
THROUGH SIMPLLPIED SHAPES

Because the tkee-dimensiomd distribution resulted in a
constant spanwise blade temperature in the region of the
blade beyond the influence of rim cooling and because the
critical blade point, as determined from a temperature-stress
relation, may Iikewise be beyond the region of ri.m-coohg
influence, one-dimensional chordwise temperature distribu-

tions were obtained. In order to compare the three-dimen-

—

—
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FWURE12.—One-dImeustonal chordwlee analysts of eflect of shape on prevalent blade tern.
perature. ThermaI conductivity of blad~ 16Btu/(hr) (ft) ~F).

sional distribution with a one-dimensional chorciwise
distribution, a rectangular trailing section was first consicl-
ered. Figure 11 show% this comparison for an effective gas
temperature of 2000° F and a Made thermal conductivity of
15 Btu/(hr] (ft) (°F); the one-dimensional distribution Y-m.
determined by usc of equation (19). From figure 11 it can
be seen that the trailing-edge ternperat ure increases from
1500° to 1850° F as the distance fro~n tho blade root. is
increased from 0.25 to 1.0 inch for the t.hre.e-dirmmsional case,
even for low-conductivity material. On the other hand, in
the region of the Made beyond the influence of iim cooling
(when the distance from the blade root is I in. or more), t]le
one-dimensional and threedimensionaI rcsuhs approach
identity; for such a region, a three-dimensional solution is
unnecessary when low-conductivity materirds are co~idered.

In order to more nearly approximate a blade trading sec-
tion, a tra.pczoidal approximation was considered. For
comparative purposes the trapezoidal and rectangular sec-

tions were constructed to have equal lengths and areas. III
general,” however, the trap(!zoid is constructed so that tbc
thicknes;” at the coolant pa9sages equfds one-half the actual
blade surface exposed to the coolant. This dimension, in
turn, fixes the length of the trapezoid,

The temperature distribution through a trapezoidal sec-
tion was obtained by use of equation (20). Such a dist.ri- -
bution, for an effective gas temperature of 2000° F and a
blade t.herma.l conductivity of 15 Btu/(hr) (ft) ~F), is
compared with tke distribution through a rectangular sec-
tion in figure 12. The temperature distribution for tlw
trapezoidal section has a slightly steeper slope than that for
the rectangular section at distances remote from the coohm... _
passag& and the temperatures a.t the trailing edge and the
coolanb~p~asage wall are lower. Part of this lower t.empcra-
ture for~ile trapezoidal section is due to the additional thick- .._.
m%s of &c cooling surface.

The e~ect of varying thermal conductivity from 15 to 210 “’-
Btu/(hr)(ft) (°F) on the temperature distribution along the
center me of rectangular and trapezoidal sections is sho,wu
in figu~es 13(a) and 13(b), respectively. In tich case, as
thermal conductivit~ is increased, the temperature distri-
butions flatten and approach linearity, decrc%sing in the
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ture for traUlnR wXfon of blade.

trailing section and increasing near the coolant passages.
Figure 14 shows blade trailing-edge temperatures for various
thermal conductivities obtained by use of the rectangular
and trapezoidal approximations. Cooling is substantially
greater for the more represent ative trapezoidal wet ion. For
currently used high-temperature alloys with thermal
conduct. ivities in the neighborhood of 15 Btu/(hr) (ft) ~F),
figure 14 shows a trailing-edge temperature difference for
the rectangular and trapezoidal sections of onIy about 600F
for an effective gas temperature of 2000° F.

(Xordwise temperatures were also cahxdated, by use of
equations (22) to {27), for concentric circle annu]i and
parallel-plate approximations. These temperatures are not
plot ted in this report; they were only used as initial approsi-
mationa for the two-dimensional numerical cahmlations made
for an actual blade shape.

TWO-D[M EXSIONALCHOEDWISETE.MPEEATUEEDISTE1BUTION
Two-dimensional temperature distributions were deter-

mined for an actual blade shape by application of the relaxa-
tion method. Separate calculations were made for the cases
}rhere an average gas-to-blade heat-transfer coefficient and
where a typical variation in the gas-to-blade heat-transfer
cweflicient as show~ in figure 15 were considered. Initial

I I I I I I f I I I I I 1

I I f I \ I
t

4TPmTFk,--
1 1

I‘d‘-t-- t----t-t--ttti

FIGURE14.-TreJUng+dge temperatures obblned from one-dimem[onal cbordwise nrmlyds
Coolsnt temperatnrq 201”F.

I —L18$3” 9

&s -fo-blode heof -
fronsfw coefficientf mo-~

(8fu/(hr)(sq ft)(“F)) 190-7

370-
3m-
~ff .,

320- ~
300- ~

~o. :

2a7- ~

270-;
,,

ao-~ ‘-250

FIGCKX15.–Cmsq stcflon of turbine blade showing typIcd wriot[on of Mt.transkr CO?IF
cferrtaround blwle perimeter.
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trial solutions were determined by usc of equation (20) for
the trailing section, equations (22) to (24) for the leading
section, and equations (26) and (27) for the thin-wall sections
of the blade near the” coolant passages, A comparison of
the temperature distributions for assumed variable and
constant gas-to-blade heat-transfer coefficients, for an
effective gas temperature of 2000° F, an average coolant
temperature of 200° F, and a blade thermal conductivity of
15 Btu/(hr) (ft).(°F) is shown in figure 16. The blwie
temperatures obtained are nearly the same for both cases
except at the leading and trailing edges. Use of the average
coefficient gives a conservative estimate of the trailing-edge
temperature and a temperature that is somewhat too low
near the leading edge.

A calculation has also been made for the average gas-to-
blade coefficient and for a blade with a tl~ermal conductivity of
100 Btu/(hr) (ft) (°F). A comparison of this solution with the
similar one for a therma~ conductivity of 15 Btu/(hr) (ft) (°F)
is shown in figure 17. The high-conductivity blade has

&S-to-blode
heot-tron5&-
coe fficienf

------

B/ode
r/l(Jo

0

9

5oo~ “~300
FIourm 16.—EtlW of varfotlon of gas-to-bide heat-trnnsfer mefrmlent on temperature

distribution through erosa seethm of wateracded turbine blade. Thermal eondnctlvlty
of blade, 15 Bto/@) (ft) (“F); effeetke gos tem~erature, ‘.KW F; aremge watw tempera-
ture, 200”F.

i77ermal
conduciwity

IW%”J

----- /5

Bfade fem,oero+un?
(oF) /500-.

‘-350
FIGURE17.—Effectof varfstfon of thermal mnduetIv!ty m“temperature distribution. through

WOter+.xkd turbine blede. &@o-blede heabta’engferme.McIen&222Btu/(I@(gq ft)(OFj:
effeetlve ges temperature ,2300”F sverege WBtmtemperature, !2co”F.

about a 250°

FOR AERONAUTICS

and a 600° F ‘lower temperature than the low-
conductivity blade at the leading and- trailing edges, respec-
tively. Little tempwature difference is obtained in the
center of the blade, where extremely good cooling prevails.

The r~ults of the various relaxation solutions are in good
agreement with the one-dimensional chordwise approxima-
tions that were used to start the numerical solutions; t.ha~
is, good. representative temperatures are obtainable by use-.
of one-djrnensional chordwise approximate ions.

In ogigr to determine the effect of dist ante from the cool-
ant passage on the trailing-edge temperature, trailing-edge
temperatures were determined for the liquid-cooled blaie
with fi”ve coolant passages shown in figure 18. Various
length trailing sections were obtained .by successively reduc-
ing the l@gth of the trailing section shown in figure 18. Tfic
temper~tures were determined by use of equation (20) and
are shown for various thermal couductivities in fi~ure 19.
The trailing-edge temp~rature is reduced almost linearly as
the length of the trailing section is decreased, The eff&t of
thermal conductivity also decreases as the trailing-ect.io~]
length is decrcmcd.

. .

FIOUEE lS.-Croea seetlon of water-eooM turbine blade showln~ location and size of fl.~
coolaot pessages used in determ!natlon of eflect of varying trniling-eectfon length on
tre.iling-edge temperature.

NONDIMENSIONAL CHARTS

The availability of several nondimensional charts, to be
subsequently discussed, eliminates the necessity for some
numerical calcula.t.ion,

The prevalent blade temperature is given by equation
[2a) as

(2a)

After division by h,,x?~,?, this equation may be written

..

where

h,,fo
‘=ht.:li,,

.—

.
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pa~~~tion of Tg,, from both members of this equation

.- .

–TBP
The plot of ~.’~Tl- against A is show-n in figure 20.

&8
For any given blade, x can be evaluated and the value of
T. .,6–TB *

1’
-- can be obtained. Finally, for the desired effective
...– T.

gas and coolant temperatures, a single simple algebraic oper-
ation results in the desired value of the prevalent blade
temperature.

Another nondimensional chart, which gives the one-
dirnensional chordwiee temperature diet.ribution through a
rectangular section, is also presented in figure 21. The
ttwnperature distribution through a rectangular section is
given by equation (19),

Lo
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FIGCM 20.-NondfmensionaI ebart for use in determination of prevalent blode temperature.

For a given turbine and set of turbine operating conditions,
values can be determined for all the quantities in this equa-
tion. A semilog plot with Qj’ as abscissa and hi/vk* as a
parameter results in a nondimensional cooling ratio

T,,.– T.
(T.,,–TI) Cosh QY’

The addition of a second quadrant, with cosh WY’as paraln-
Tz,.– T,

eterl yields values of the temperature ratio T,..–T, at any
point in the rectangular section. This chart is given in
&ure 21. The chart is used as follows: A vertical line is
constructed through the calculated value of the abscissa w“’
and is extended to the calculated value of the parameter ht/qkE.
From this point, a horizontal line is dra]~m, extending into
the second quadrant, and intersecting several Lines repre-
senting various values of cosh ~’. Yert ical lines from the
intersection points to the abscissa in the second quadrant

7’ – TB
give values of the temperature ratio #~’~ at various

r.e
“.

positions in the rectangular section. Values of the tem-
perature TBare then easily obtainable.

In order to illustrate the use of figure 21, a rectangular
section with dimensions equal to those previously tabulated
will be considered. For a blade thermal conductivity of
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F]OL!HX21.-Ncmdimenalonel elwtrt for use in detarmirratlon of tem~rature distribution through rwtangulex traIILnK~tlon of oJoled turbine biade.

15 Btu/(hr) (ft) (°F) and outside and inside heat-transfer
codlicie.nta of 222 and 2370 Btu/(hr) (sq ft) (°F), respec-
tively, the parameters used in figure 21 are evaluated as
follows :----- ..-.

hi
2370 =2.9

;l?;=(54.4) (15)

The point represented by these parametem is given by the
circle in the first quadrant of figure 21; the square. on fig-
ure 21 designate the corresponding point for a thermal con-
ductivity of 210 Btu/(hr) (ft) (°F), A horizontal line pass-
ing through the circle and intersecting the family of lines in
the second quadrant of figure 21 gives as tlm abscissa of the

T – T.
second quadrant the values of the temperature ratio ‘“’

Tt.,– Tt
for various positions in the rectangular sectiori as follows:

Tg,e
S3°.*75 ‘“r “=0T

=0.115 for ~’=1

=0.285 for ~’=2

=0.75 for py’=3

For 2’,,.=2000° F and T1==200°F, it foIlows that the lJacle-
tlempw-ature calculation results in the following values:

T~= 1865 for ~’=0 (trailing-edge temperature)

=1793 for ~’=1

= 1487 for ~’=’2 .—

=6,50 for @J’=3 (temperature at coo]ant passage)

,.-

. .

These results comprire favorab&r with the calculated distri-
bution shown on figure ] 2.

CONCLUDING REMARKS
—

Analyses have been presented for obtaining spamvisc
temperature distributions near a coolant passage, chordwise
distrilmtions (for both approximated and actual shapes) in
regions where conduction to the rim is inappreciable, and
three-dime.nsiona] distributions for approximated liadc
shapes. -Numerical examples based on specific blade con-
figurations and heat-transfer coefficients available from
unclassified sources have been presented. Although the
analyses are exact, the numerical values used in the calcu-
lations may not necessarily be the same as those for cooled
turbines. TIM numerical examplea have been presented to
indicate the range of applicability of the various analyses
and to presrmt the general nature of temperature distribut-
ions in liquid-cooled turbine blades. In the foIlowing
paragraphs the more important results are reviewed to show
their general guidance for design studies.

The three-dimensional temperature distribution includes
conduction to the rim, whereas the two-dimensional ancl
onedimensional chordwise distributions do not. Conse-
quently, the temperatures obtained from a, t.hreedhnensional
investigation are less than those otherwise ob tainwl. As a
result, it is advisable to .det ermine the simplified solutions
first; if the temperatures that result are not excessively high, ._
a three-dimensional investigation is unnecessary; whereas if
the resuIting temperatures are large, a threedimensiomd
investigation can be made.
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The twodhnensional solution just- referred to is of necessity
a numerical solution (bemuse of the var~ing boundary con-
[lition causwi by the shape of the blade). It has been shown
by the calculations previously presented that for uniform
outside heat-transfer coefficients, simplified onedimensional
(Distributions were in excellent. agreement with the two-
dinwnsional relaxfi t ion solution. 11’lwn varialie outside
heat-transfer coefficients were considered, the simplifiwl
solut iona indicatwl optimistic results and the two-
{limensional relaxation solution appears essential. Increasing
I)lade thermal comluctivity results in raising the cooling
surface temperature and lowering the trailing-edge tempera-
ture and thus in a more uniform blade temperature.

The following symbols are used in this report:

K

k

i
M, iv, o, P
()
r
T
r

u
T

APPENDIX A

SYMBOLS

area of metal, sq ft
blade span, ft
constants of integration
diameter of c.rcle used to appro-sirnate leading

section of blade, ft
ratio of distance between net points O and 5

and net spacing
HankeI functions (special kinds of Bessel

function)
heat-transfer coefficient, Btu/(sec)(sq ft)(°F)

or Btu/(hr) (sq ft)(OF)

Bessel functions

chordwise distance from blade trailing edge to
vooltint passage, ft

(
.h:~

).li~Sln *.
therm-al conductivity, Btu/(see) (ft) (°F) or

Btu/(hr)(ft)(°F)
perimeter, ft
points on figure 3
heat flow, Btu/sec
radial distance from hub of turbine, ft
temperature, “F
distanre from blade tip to bltide element., ft
distance from trailing edge to blade element, ft
number of blacles

distance from median plane of section to blade
t!lement. f t

I{,(i(,)Jo(ir2) +iJl(irl)iIlo(ir2)

[ 17-1(1-tan *) i
2A’ Y’+- ~ tan ~

T,,.– TB
ho [0

hi,21t.2

distance between parallel plates, ft

thickness of trailing section, ft
~hO ~

(–).k~r.

()tan-l -
Zj

One-dimensional spantise distributions proved to be valid
near the coolant passages. The temperature of the cooled
part of the blade (prevalent l.dade temperature) was inde-
pendent of blade length. If the insicle heat-transfer coeffi-
cient is increased, the prevalent blacle temperature decreases;
i~ was shown for a particular case that the prevalent bltide
temperature for water as coolant was only about half that
for kerosene as coolant.

LEWIS FLIGHT PROPUNON L.iBOR.iTORY

NATIONAL ADVISORY COMMITTEE FOR .4ERONALTTICS

C7LEYELAND, OHIO, October27, J9.50 -

Subscripts:
a
av
B
e
9
i
1
m
n }
()

P
L?
r
rim
T
1
2
3
4 }

; }
Superscript:
prime
Functions:

A

B

D

E

F

G

H

I

J

air
average
blade
effective
gas
inside (iier with D)
liquid

summation indices

outsicle (outer ]J-itb D)
prevalent.
rotor
bla:le root
rim
blade tip
denote sections in spanwise in-restigatiol~

w-k~ usc~ ~it.b z; 1 and 2 denote trapezoidal
thicknemes at trailing edge and coolant
passage, respectively, whtm used with r

denote end near blade tip and encl near rotor
hub of various sections

linear dimension increased by rf2

—
‘F2

()E
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K, L, M, N, integration constants (See equations (13) to ~

O, P, Q ( )(

sin Q.j’ 1

(18).)
n 2(~~,~– ~B.~) Qaj? sin 2Qnj’

R kL?fifm,.sinh Mm,~j’+hi cosh iwm,.j’ )1+~’

s.
(–1)*-I

+(?’,.+ f2n_~ ‘“

APPENDIX B

ONE-DIMEN$31ONAL SPANWISE TEMPERATURE DISTRIBUTION

The heat balance for the uneooled.section of the blade
(fig. 1, section 1) is given as follows:

dT, ,
Heat ent+ring by radial conduction= –k~~~, I~

Heat entering sides by convection=.h, 1,(1’~,,– TB,~)d~l
Heat leaving b.v radial conduction

The heat-balance equation is

!%+holo(TE,e-TB, @L
‘~B.AB,l ~xl

or

where
A= h,le 4

()kBAB,1

A solution is

TB,l=Tg,a– Cl COShA(x1+CJ (1)

where Cl and 02 are integration constants.
For the cooled section of the blade (fig. 1, section 2). the

heat balance is given as follows:
dTB *

Heat entering by radial conduction=— kBAB,*–d=

Heat entering sides by convection= hJo(Tg,,– T~,2)dx~

Heat leaving by radid conduction=

( dTm~~z,–kBAB,, & TB,s+~
)

Heat leaving by radial convection= h’Ji,JT~,Z- T~)dzz

The heat-balance equation is

‘T’ ‘+ hL(TLe- l’B,d dxs–kBAB, s ~

ii solution is

where Ca and C4 are. integration constants and

—.

For the rim section (assumed constant area)” of the rotor
(fig. 1, Section 3), curvature was neglocted because the rim
thickness was small in comparison with the rim radius. In
addition, average vaIues of hi, Jf, a and ra were. used. Tile _
heahbalance equation reduced to

where

and

A solution is
T,lm= G+ C8e%+ Oae-% (3)

where C6 and Co are integration constants and where

(7G=E’

For the rotor section (assumed constant strength) (fig. 1,
section 4), average values are used for h{,Jk t and for rdj and
an approximate solution (as in section 3) is obtained. Be-
cause the rotor is liquid-cooled, such a solution is adequate.
The resulting differential equation for this section ia

‘~–BZT~=_ZZ (B4)

where
Hz_ 4~r&e,h=+(hi,Al{,&—

kRAR
,,... .—

and
zs=4~r~~.h.T.+( h~,alt,J,,Tl . ..=.. ..C

kR.4.
A solution is

TE=J+ C, Cdl H, (4)

where CTis an integration n constant and where

J=(;)2

The bouwhwy condition

dTR
—=0 for r=O
dr

has already been applied.



ANALYSIS OF TEMPER.4TURE DISTRI%TION IN LIQUID-COOLED TURBINE BLADES

APPENDIX C

THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION THROUGH SIMPLIFIED TRAILING SECTION

A three-dimensional temperature distribution through a
rtw.tangular parallelepipeds, an approximate ion for the trailing
section of a liquid+ooled turbine blade, is given as folIows
(fig. 2):

aT,
Iht entering element from top= -kE dg dz ~

aT,
Heat entering element. from right end = –k~dx dz ~

lkat entering element from front= –
a T,

kBdxdY~

Heat leaving element at bottom

(

aTB a~TB
=–kBdyd2 a;+zt dx

)
Heat leaving element at left end

=–kBdXdz
(

hTB &T~
~+ ~~, @

)
Heat leaving element at rear

The he~t-balfince equation is

or

(cl)

Simplification in applying boundary conditions (as fulIy
{lescribed on p. 4) and use of the effective gas temperature
Tg,e instead of the bhide temperature TB as the reference
temperature, that is, use of the substitution

f?=TC,,—TB

rlltinge equation (Cl) into

(11)

The origin of the coordinates chosen is shown in figure 2;
the plane z= O is the median plane of the rectangular para-
Ielepipwl and from considerations of symmetry no heat flows
t.wross this median plane. The boundary conditions to be
up’plierl are

~,=(1 when z’=0 (C2)

ao

@’=O’Th@=o
(C3)

185

k,~=h,(T.,,– T,–8) when y’=j’ (Cty

and
a~

k%z–––h.06 when z =./2 (C7)
.

A solution of equatiou (11) satisfying the three boundary
conditions (C2), (C3), and (C4) is

o=m~l ~1 (~.,. cos L. .d COShnlm,. Y’ COSNm”z+ .-

Om,ncos~pm,*X’COSQnYrCOS~mz) (12)

‘where K, L, M, N, 0, P, and Q are consst@s. Relations .
among thwe constants are

iv=, #‘= Nm~+Ln2

1
(7n,7z=l,2,3, . . .)

P 2—~n2+Qm?
(13)

m,n —

The boundary condition ecpressed by equation (C5) leads
to a determination of L. Substitution of equation (12) int~
equation (C5) gives -.

Tg,9– T~,,= ~i ~; (Km,. GOSL. b’ COShilIm,. y’ cos NmZ +

Om,s cosh Pm,. b’ COSQ.y’ COSN=z) (C8)

It can be seen that the first member in-the double summat ion
in equation (12) vanishes when cos L-x’ =0; hence, if

() lU

“= ‘–5 77

-----

from equation (C8) it follows that.,

This is a Fourier development along yr and 2.
The dewloprnent of equation (C6) Ieads to a determination

of Q-. Equation (C6) becomes, with the aid of equation (12)
and its derivative,

~1 ~, k, [K., =(COSLz z’) JI.,. sinh ~~n,.j’ cOSN~z–

0=, . (cosh p~,. z’) Q. SiIl Qzj’ COSNw.z]

=~;~ih, (T&8– Tl–K., a (wS L. .rrCOShfiIn,, j’UMN~Z–

0~,ncodlpm,.x’COSQ=~ COS~mx) (Clo) .
In order to simplify equation (C’1O) at the boundary when
yr =j’ and to solve for the constant Q., the second summation
in the left member is equated to the last summation in the
right member term by term. Then

ht(T&C– TJ=~,l ~iKn. .(k~M.,. sirh Mm,J+

& cosh i~~w,,j’) cos Lxx’ COSN’=z (Cl I)
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and

$J YJbo., Jcosh P m, nx’)Qn sin Qnj’ Cos Nm2

=$j ~lhiO~,. COShPn,.z’ COSQ.j’ COSNnz (C12)

The sums are equated term by term. l’hercfore, Qa is
determined as any solution of

I(J
hi kB

tnn (QJ) =mn=~

The development of equation (C7) leads
tion of IVm.

(17)
to a determina-

(h, &,. COS Lxx’ COS~ Mm, .Y’ COS Nm ;+

)- om,.cosh pm,.x’ cos Qay’ COSNm ;

hoT

ho K “““
tan N. $=—=kBNm G

2

(C13)

(18)

The possibility of determining values of Km, i and 0~,. to
satisfy equations (C9) and (Cl 1) has beeu established in
textbooks on Fourier and other harmonic series (reference 7,
pp. 118–121), and it is ordy necessary that the values
determined define a convergent series.

~~alues of Km, ~are determined by. integrating equation (Cll)
between the limits x’=0 to x’=b’ and z=O ta z= r/2 ancl
substituting the values previously determined for La and
Nm in cquatiom (16) and (18). The integration is accom-
plished in two steps using the functiom cos L,x’ dx’ and
cos Naz ok as multipliers, where s and o are integers. For
abbreviation,

R=kBMm,. sinh Mm,. j’+Jti COSLMm, J (C14)

‘mm

s

W=ht
~lRKm, s cos NmZ COS2LnZf dxt

2’-0

=hi(Tg,4 – Tl) ~’-b’ cos Lnx’ did (C15)
Jz”-O

because all the terms

J
b’

cOS Lnx’ COS L,x’ dxt
o

vanish if s #n. Integration of equation
stitution of limits lead to the result

,

(C15) ancl sulJ-

[ 1sm 2LEx’ b’
2 RKm,n~:z Lnz’+ g ,
m-l

=h, (Tf,g–TJ sin ~,x, b’
[ L. 10

or

($lRKjm, . COS NmZ b’+stiz;c=b:)
n

sin La 6’
_=2hi (Tr,g—TJ L

n

WheIl wiua~ion (16) is used for L., there results

.—

(Clti)

,

(C17)

(c18j

When equat~on (C18) is integrated in terms of 2, ~ising
the multiplier cos ill, z &, it foIlows that.

sz=;

J
z+ .

RKm, . COS2 NmZdrz=SB COS Nmzdz (C19)
/ #-a a-o

because all the terms

.

J
~

COSNmz C09N,z dz
0

vanish if m #0. Upon integration,

RKm, ~

(
— Nmz+

2Nm ‘in:Nm2i=%X~Nd “’o) -

or

Therefore,

_ 2sn
sin Nm ~

K
21-

‘“’ Nm~

(“)

sin 2N. ~
z ““(C22; * ‘“-

. 1+
2N: $

.
Similarly, from equation (C9) it is found that. “

sin N. ~
0m,,=2T.

1

(T

—.

N.; sin 2N. ~ ““(C2:3)
Cosh Pm,,b’ 1+

21Vm;

where
sin Qmj’

T.=2(T,,6– TB,,) Q j,
1

m
( )

sin 2Q, j’ (C21)—”-
1+ 2Qnj’
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Finally, substitution of equations (C14) and (C 18) in equation (m~) ~n~ substitution Of equation (c24) in equafiion (c23)
kid to the folIowing ~’alues of-the coefficients Km.. and 0~,,:

a 11(1

(15)

APPENDIX D

ONE-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION THROUGH SIMPLIFIED SHAPES

Rectangular trailing section of blade removed from in-
fluence of rim cooling,-The heut balance for an element of
the rectal] gular section is given as follows (fig. 4(a)):

IIt*at entering by conduction (right end) =k~~ ~

Heat t~ntering by con~ection (sides) =2hOOdy -
Hint. leaving by conduction (left end)

“de‘*”dy=kBr(,fi+~ )

The heat-balanre equation is

or

(Dl)

where C? and Co are integration cpnstnnts. The boumlary
conditions to be applied in the evaluation of the integration
constants are

and

(D4)

From ~quations (D2) and (D4), it foIlows that

aml therefore

V&n r is not too large. Calculations revealed that the.._.
difference between Cs and T/2 varied from 0.4 to 0.5 percent
for the values of p considered and had no appreciable effect-
0.005 foot or more inside the trailing edge.

From equations (D2), (D3), and (D5) it foIlom’e that

and therefore

Substitution of equations (D5) and (D6) in equation (D2)
leads to the final equation

Trapezoidal trailing seotion of a blade removed from in-
fluence of rim cooling. -In reference 8, the twupenituie-

dist.ribution equation along the a~is of a’ trapezoidal section
is derived. The solution obtained is expressed by the rela-
~011

e= (?,oJ*(ir)+ &iH.(~r)

where Plo and Cll are integration eonst rmts,
Bessel functions, and ~ is defied as

(D7)

J. and iHo are

. (D8)
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where

K2=A- ‘
k, Sln +

and

(D9)

(DIo)

The constants CIOand C,l in equation (D7) maybe ewduat.ccl
by application of the following boundary conditions:

-de=0 when y’= O
dy’

and
de

“ ~=h’(T’”
– T1– 8)\vhen y’=j’

or
d e
~=0 when ~=rl

and
k.2K’
—=hJT., - TJ–e) when f= ~*
f2 $

It follows from equation (D8) t,hat when y’ =0,

= ~l=2K
[ 1T~(1—tan ~) i

2 tan $

md when y’=j’,

[ 1(1=2K j’+’’(l–ttili#) ~.
2 tan @

Differentiation of equation (D8) gives

de J do
~=m~ ‘-

hen;e,
d 8 *
fi=o Wkl a~=ody’

From the properties of the Bessel functions,

dJ.(y)
—=–J,(Y)dy

and

w=_ ~~,(~)
(fy

Differentiation of 6quation (D7) thereforo gives

:=– C,ciJJir)+ C1lH,(i~)

and it foIIows that

(DI1)

(D12)

(D13)

(D14)

(D15)

(D16)

(D17)

(D18)

~11= C’,oiJ,(if,)
H,(i r,) ‘“”-”‘-- (D19)

when

From equation (D12), with the usc of equations (D7) and
(D17), itfi found thtit

=ILi[l”.,,– T,– C1oJO(i~,)– C,liHO(i~,)] (D20)

The values of the integration constants C,O and Cll arc
now found by solving simultaneously equations (D 19) and
(D20). Insertion of these values in equation (D7) gives the
desired equation for the temperature distribution through
a trapezoidal section

For a wedge, rl~ 0, Then, from equation (D 15) it is seen
that ~1~0, and asa comequencc, f{l(itl) ~ =1and iJl(i~J =0.
Equation (2o) then simplifies to

“r’ (Tc ,– T~)J,(if) ‘
~=21@k~ s -------- (21)

“t’ J,,(ir2)-iJI(~f2)
2K2kB

Concentric circle annulus approximation for blade leading
edge,—The derivations of the equations giving bltidc tmn-
“pmatureii at the inner and outer edges of the annular region
are given as follows (fig. 4(c)):

IIeat entering from hot gas= 27r~ hO(Tc,,– T~,O) (D21) -

Fled flowing ova circle with diameter

(D22)

IIeaii leaving to coolant=2r ~ ht(T,, ,– T,) (D23)

A solution of. ‘equation (D22) is

“=(5%’0’023 (D24)

where Cla is an integration const tint. Appl kation of the
boundary conditions

T,= T., owhen D= DO
and

T.= T,. i when D=Di

to equation (D24) results in the elimination of Clz and an
evaluation of Q, namely,
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or

From simultaneous solutions of equations (D2 1), (D23), and
(D25) it is found that

(25)

From a simultaneous solution of equation (D24) and equation
(D24) with the inner boundary condition applied and use of
equation (D25), it is found that

log, g
Tiq= T., ~+— ~ (T~,o– T~,,) (24)

log.~

From equations (D23) and (D25) and from equations (D21)
and (D25) there are obtained

i?kB
T,,,=T+ Do(TB,O–T~,J (22)

““ 10%

Zuld

T,,6=Tz,.–
2k~

DO(TB,O- TB, t) (23)

‘“‘0 10g’n

13quations (22) to (25) express the blade temperatures in
terms of known quantities.

Section of blade approximated by parallel plates.—The
(Derivation of the equations expressing the blade temperatures
at the inner and outer edges of a blade section appro.xirnated
by a region between parallel pIates is given as follows
(fi& 4(d)):

Q =heat entering from the hot gas= h.(Tg,,– T,,.)
Q=heat leaving to the coolant= hJT., ,– T,)

Q=heat flowing through the section= ~(TE.*– T?rt)

where u is the distance between the plates. Equating these
heat flows results in the following system of equations:

~(TB,.– T~,i)=h. (Tg,,– TB,.)=hi (TE,i– T’)

A simultaneous solutitm of equations (D26) gives

~B h T ,e+htTf
Z+a( o x

T., ,= kB ~
1+----L( *+hi)

and

Tm+&i (hoT&,+htTJ
T.,,=

‘B L +h.,)1+=( 0

From equations (26) and (27) it follows that
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